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Simulation of the Wiener sausage
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The volume of a region visited by a spherical Brownian particle for a timet, known as the Wiener sausage,
is an important random variable characterizing Brownian motion. A Brownian dynamics simulation is used to
study statistical properties of the Wiener sausage volume. We show that the probability density is closely
approximated by a Gaussian distribution not only at asymptotically long times, but over a wide range of times
as well. We also refine the expression for the dispersion by finding a correction term for the long-time
asymptotic dependence.

PACS number~s!: 05.40.2a
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The spatial region visited by a spherical Brownian parti
for a time t is known as the Wiener sausage~WS! ~see Fig.
1!, from Kac @1#. Leontovich and Kolmogorov@2# were the
first to demonstrate that the volume of the WS is an imp
tant random variable characterizing Brownian motion. A
tempts at determining statistical properties of the WS volu
~as well as the cognate problem of the number of disti
lattice sites visited by a random walker@3–8#! are motivated
both by many interesting mathematical issues@9,10# and the
number of physical, chemical, and biological applicatio
@11,12# that call for a knowledge of this random variabl
One source of the particular interest in this class of proble
is that of improving the initial Smoluchowski theory o
diffusion-controlled reactions@12#.

Analytical approaches and numerical simulations
complementary in their consideration of the problem un
study. Due to analytical treatments@1,2,10,13–16# consider-
able progress has been made in understanding the stati
properties of the WS volume, mainly at long times. At inte
mediate and short times the problem is less well understo
The formulas obtained are not asymptotic series and the
no indication of how larget has to be to ensure that the give
formulas become valid. In particular, it is known~due to Le
Gall @13#! that, in high dimensions (d>3) the limiting (t
→`) distribution is Gaussian; however, no information
available on when this limit is reached. The most efficie
method for solving problems of such type is a Browni
dynamics simulation. Brownian dynamics is an off-gr
method for simulating diffusion processes, which is not
stricted to a finite simulation box@17,18#. It is based on the
isomorphism between the diffusion and Langevin equatio
As far as we are aware, the Brownian simulation has ne
been applied to analysis of the WS.

With this in mind, we have simulated stochastic trajec
ries of a spherical Brownian particle, counted directly t
volume visited by the particle, and calculated the aver
value, the dispersion, and the probability density of the W
volume. The results obtained in the three-dimensional c
are presented in this paper. First, to verify our method
simulation we compare the computed result for the aver
volume with the known analytical solution@16# and find very
good agreement between them. Then, we show that the
PRE 621063-651X/2000/62~3!/3116~5!/$15.00
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iting expression for the dispersion@16# becomes a usefu
approximation at very long times only and find a correcti
term that allows a refined calculation of the dispersion
intermediate times~note that an analytical calculation of th
correction term is a hard mathematical problem!. To the con-
trary, the Gaussian distribution fits the probability dens
~save its long tails! surprisingly well, not only at asymptoti
cally long times, but over a wide range of times as well.

As a concluding remark, we shall discuss the relations
between the WS volume characterizing continuous diffus
and the range of a random walk~the numberRn of distinct
sites visited by ann-step lattice random walk! used in con-
sidering the analogous discrete process. The theory of
range of a random walk was initiated by Dvoretzky a
Erdös @3# and developed in subsequent articles@4–7# ~see
Ref. @8# for a general review!. The similarity of a Brownian
motion trajectory and a random walk is well known@19#.
Perhaps this could have been the motivation for the se
ingly widespread opinion thatRn is simply a discrete analog
of the WS volume, and the difference between these qua
ties is not significant. We show that this opinion is genera
not valid because the similarity of trajectories does not im
the similarity of functionals of trajectories. Only in low
dimensional spaces (d51,2) are the WS volume and th
range of a random walk proportional to one another.

We begin by recalling some relevant definitions a

FIG. 1. A sample of a typical Wiener sausage generated
Brownian dynamics simulation.
3116 ©2000 The American Physical Society
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known analytical results to be used in the subsequent an
sis. Consider a spherical Brownian particle of radiusb. By
introducing an indicator function

I b~r ,Wt!5H 1 if minur2rWt
u<b

0 otherwise
~1!

where rWt
PWt , the volume of WS that corresponds to

given Wiener trajectoryWt of the particle center can be for
mally defined as

v~Wt!5E I b~r ,Wt!dr . ~2!

The random variablev(Wt) is distributed with the probabil-
ity density Ft(v)[^d@v2v(Wt)#& ~the symbol~¯! stands
for the average over the Wiener trajectories!. Analytical cal-
culation of the probability densityFt(v) characterizing the
distribution of the WS volumev at time t is a hard math-
ematical problem. An exact solution has been found only
one dimension for both free@15,16# and biased Brownian
motion@20#. In high dimensions (d>3), the probability den-
sity near its maximum takes on the Gaussian form whet
→` @13#,

Ft~v !5
1

A2ps~ t !
expS 2

@v2 v̄~ t !#2

2s2~ t ! D , ~3!

wherev̄(t)[^v(Wt)& is the average of the WS volume an
s2(t) is the dispersion. In accordance with the definitio
Eqs. ~1! and ~2!, the average ofv(Wt) is expressed via the
average of the indicator function. The quantity^I b(r ,Wt)& is
equal to the probability that a diffusing particle is absorb
by the only trap of radiusb for time t, initially at distancer,
which is a well known solution of the isolated pair problem
Using this fact, one has@16#

v̄~t!53v0~t12At/p1 1
3 !, ~4!

wheret5Dt/b2 is the dimensionless time,D is the diffusion
coefficient, andv05 4

3 pb3 is the volume of the Brownian
particle.

To find the dispersions2(t) one has to focus on the av
erage of the square of the WS volume,v2(t)[^v2(Wt)&,
because

s2~ t !5v2~ t !2 v̄2~ t !. ~5!

From the definition of the WS volume@see Eqs.~1! and~2!#,
it follows that the second momentv2(t) can be expresse
through the absorbing probability of a Brownian particle
the presence of one and two traps. In the two-trap situatio
is difficult to calculate the absorbing probability for arbitra
position of the traps. A simple approximate method to tr
the problem at long times was proposed in Ref.@16#, where,
as a result, three main terms of the long-time expansion
v2(t) were found. The first two coincide with the two ma
terms of the long-time expansion ofv̄2(t). Thus, the result
obtained in Ref.@16# can be written in the form

s2~t!59v0
2@t ln t2At1o~t!# for t@1. ~6!
ly-
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The approximation used in Ref.@16# is too crude for calcu-
lating the coefficientA determining the correction term fo
the long-time expansion of the dispersion. However, with
the correction term one cannot decide where the asymp
behaviort ln t predicted by the main term becomes valid a
Eq. ~6! is meaningful only in the limitt→`. One of our
motivations to carry out statistical simulation of the WS is
estimate the coefficientA and, hence, to elucidate the long
time behavior of the dispersion. Another motivation is
look at how the Gaussian distribution fits the probability de
sity Ft(v) at different times.

To simulate the WS first it is necessary to simulate s
chastic trajectories of the center of a freely diffusing sphe
cal particle. The trajectories are generated from a serie
successive Brownian steps by employing the original s
algorithm of Ermak and MacCammon@17#. In a given run,
the particle center moves through a sequence of points$r i%,
i 51,2, . . . . Thei th hop occurs during a predefined tim
interval Dt, so that the trajectory is propagated according

r i 115r i1A2Dtg, ~7!

where the vectorg is generated stochastically as a set
Gaussian random numbers with a standard deviation of u
~the diffusion coefficient is set to unity!. In order to compute
the volume of the WS corresponding to a given trajecto
we embed the trajectory into a cubic box. This box is pa
tioned into small cubic boxes of sizea,1 ~the particle ra-
dius b is set to unity!. Following the definition of the WS
volume, Eqs.~1! and ~2!, we consider a small box as ‘‘vis
ited’’ if the minimal distance of its center from the trajecto
is less than 1. Then we count the number of ‘‘visited’’ sm
cubes and find the WS volume. The results are averaged
1000 trajectories. We performed additional analysis a
found that Dt50.01 ~with this set of unitst5t) and a
50.25 are optimal values forDt anda from the viewpoint of
accuracy of the calculation and time and memory consum
tion. Note also that for a spherical Brownian particle o
method of gauging the volume leads to an overestimate ov.
To refine the estimate, the result of calculation of the W
volume is rescaled by a factor of 0.96~this value of the
correction factor was chosen because it allows us to rea
perfect agreement between the average volume of the
found by simulations and the analytical result, which is e
act!.

A sample of a typical WS generated according to t
above method is shown in Fig. 1. It demonstrates well
entangled behavior of particle trajectories and the com
cated structure of the WS. In Fig. 2 we present the Brown
dynamics simulated results for the average volume of
WS at different times in comparison with the exact tim
dependencev̄(t) given by Eq.~4!. Such a comparison serve
as a test of accuracy of our simulation. Even at short tim
t,10, where the accuracy of measuring the volume is re
tively low, deviations do not exceed 3%, while at long
times t.100, they are less than 0.5%. The fact that t
computed and analytical results for the average volume
in very good agreement allows us to apply the method to
study of more detailed properties of the WS volume dis
bution.
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Figure 3 presents the results of calculations of the disp
sion s2(t). As one might expect, only the main term of th
asymptotic dependence@see Eq.~6!# makes too crude an es
timate of the dispersion not only at short times but also
intermediate times (t;103). Taking properly into accoun
the linear correction term brings the theory and the comp
experiment into better agreement. The statistical proces
of simulated data~at the times 900<t<1000 best suited for
our goals! suggests that the coefficientA is equal to 4.42
60.02 ~the surprising thing is that the crude estimateA
'4.71, derived by the method@16# whose accuracy is too
low for the correct calculation ofA, is probably not much in
error!. Thus only at timest.1020 does the main term in Eq
~6! by itself give a more or less adequate~with accuracy
10%! estimate ofs2(t). With A54.42, Eq. ~6! allows a
refined calculation of the dispersion att.500.

All of the relevant properties of the WS volume can
expressed in terms of the probability densityFt(v). When
considered as a function ofv, Ft(v) has a bell-shaped form
In the course of time the peak shifts to infinity and its wid

FIG. 2. Comparison of the analytical solution for the avera
WS volume@Eq. ~4!# ~solid line! with simulation data~squares!.

FIG. 3. Comparison of the analytical solution for the dispers
@Eq. ~6!# with A54.42 ~solid line! with simulation data~circles!.
Dashed line corresponds to the long-time asymptotic behavior g
by only the main term of Eq.~6!.
r-

t

er
ng

increases. The time evolution of the probability density
strikingly illustrated by Fig. 4, in which the volumev is
scaled byv̄(t). In this figure we present the distribution o
the WS volume at different times, obtained from simulati
data. We also present the curves corresponding to the Ga
ian distribution, Eq.~2!, with the parametersv̄(t) ands2(t)
found from the results of simulation. For comparison~in the
bottom panel! we add the probability density of the span
Brownian motion~the one-dimensional analog of the W
volume!, which can be calculated exactly@15,16#. Note that
this curve exhibits a non-Gaussian distribution of the sp
and is independent of time.

As indicated in Fig. 4~bottom panel!, even at short times
(t&10) the Gaussian distribution is a satisfactory appro
mation for the probability density. This is in contrast wi
what is known for the one-dimensional case. The no
Gaussian behavior in one dimension is due to the mem
among the increments of the ‘‘volume’’ visited by a Brown
ian particle at different instances of time. Because in th
dimensions the Brownian motion is a transient process~in
the one-dimensional case the process is recurrent!, the
memory effects are weakened in the course of time. T
important consequences of this fact are the linear depend
of the average volume on time and the Gaussian form of
probability density att.1. We would like to stress, how
ever, that these effects do not disappear even at asymp
cally long times. Just the memory effects are responsible
the non-Gaussian behavior in the far tails. Moreover,
nonlinear long-time asymptotic behavior of the dispersion
also a manifestation of non-Markovian properties of the W
volume.

As Fig. 4 suggests, with time the normalized bandwid
associated with the relative fluctuations̃(t)5s(t)/ v̄(t)

e

n

FIG. 4. Time evolution of the probability density of the W
volume. Different panels correspond to different ranges of tim
The results of the simulations~averaged over 10 000 and 1000 tr
jectories for the bottom and top panels, respectively! are presented
by symbols. The curves correspond to the Gaussian distribution
~2!, with the parametersv̄(t) ands2(t) calculated from simulation
data. The legend gives the pattern correspondence. The dash-d
line in the bottom panel represents the exact solution for the p
ability density of the WS volume in one dimension@15,16#.
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PRE 62 3119SIMULATION OF THE WIENER SAUSAGE
rapidly decays. At timest.100 ~top panel!, the Gaussian
distribution becomes a very good approximation for t
probability density. This is in agreement with the cent
limit theorem forFt(v) proved by Le Gall@13#. Moreover,
our results show that in fact the probability densityFt(v)
takes on the Gaussian form not only at asymptotically lo
times but at intermediate times as well. Of course, suc
conclusion holds true only for volumes that are not too
from v̄(t) ~our estimates show that the halfwidth of th
interval is at least of order 10s at timest51000). As shown
by Donsker and Varadhan@14#, the small-v behavior of
Ft(v) obeys an exp(2const3Dt/v2/3) law. Unfortunately, the
accuracy of our simulation is too low to handle the lar
deviations and non-Gaussian behavior in the far tails.

Our last remark is that the WS volume is similar but n
identical to the number of distinct sites visited by a rand
walk ~the range of the random walk! characterizing the
analogous discrete process. In order to demonstrate this
us compare the trajectory of the Brownian particle cente
ann-step (n@1) random walk on a simple cubic lattice wit
period l. For timet such a walk executes

n56Dt/ l 256~b/ l !2t ~8!

steps and visitsRn distinct lattice sites. Note that a continu
ous description implies that the particle radiusb appreciably
exceeds its mean free path, whose role is played by the
tice periodl, i.e.,b@ l ~the lattice consideration is justified i
the opposite limiting case,l @b). For largen, the distribution
of Rn is Gaussian@5# and can be specified by the avera
value R̄n and the dispersionsn

2 of the range, which are as
ymptotically @4–6#

R̄n.0.718@n10.729An1O~1!#,
~9!

sn
250.215@n ln n2Bn1o~n!#

~the coefficientB was found numerically to beB'4.17 @7#!.
Let us compare the relative fluctuation of the WS volum
s̃(t), with that of the range,s̃n5sn /R̄n . In one and two
dimensions, the ratios̃(t)/s̃n is equal to unity~one can
-

y
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m

l
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t
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check this using the results obtained in Refs.@4–6#, @16#!,
i.e., the quantities discussed are identical. In three dim
sions, however, this is not the case. Indeed, according to
~4!, ~6!, ~8!, and~9!, we have asymptotically

ŝ~t!/s̃n.3.79b/ l , ~10!

i.e., v andRn are not proportional to one another. The po
is that the discrete analog of the WS volume is the num
R(n;b) of distinct sites visited by a sphere of radiusb@ l ,
the center of which executes random walks on the latt
Evidently, for d.2, where the Brownian motion is a tran
sient process, the statistical properties ofR(n;b) differ from
those ofRn . The distinction occurs at anyb. l . Thus, only
in low-dimensional spaces, where the process is recurr
are the WS volume and the range of the random walk p
portional to one another.

To summarize, we have performed a quantitatively ac
rate Brownian dynamics numerical simulation of the W
We have studied the statistical properties of the volume
the WS. Our main result is that the Gaussian distribution
the probability density surprisingly well, not only at asym
totically long times, but over a wide range of times as we
We have also demonstrated that the limiting expression
the dispersion is a useful approximation at very long tim
only, and found a correction term that allows a refined c
culation of the dispersion at intermediate times. Along w
the general theory of random processes the results of
present paper may be useful when considering diffusive p
cesses in which the particle size far exceeds its mean
path. The results obtained in the two-dimensional case
be reported elsewhere.
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