PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000

Simulation of the Wiener sausage
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The volume of a region visited by a spherical Brownian particle for a tinkeown as the Wiener sausage,
is an important random variable characterizing Brownian motion. A Brownian dynamics simulation is used to
study statistical properties of the Wiener sausage volume. We show that the probability density is closely
approximated by a Gaussian distribution not only at asymptotically long times, but over a wide range of times
as well. We also refine the expression for the dispersion by finding a correction term for the long-time
asymptotic dependence.

PACS numbd(s): 05.40—a

The spatial region visited by a spherical Brownian particleiting expression for the dispersidri6] becomes a useful
for a timet is known as the Wiener sausa@#'S) (see Fig. approximation at very long times only and find a correction
1), from Kac[1]. Leontovich and Kolmogoroy2] were the term that allows a refined calculation of the dispersion at
first to demonstrate that the volume of the WS is an imporintermediate timegnote that an analytical calculation of the
tant random variable characterizing Brownian motion. At-Correction term is a hard mathematical probjefio the con-
tempts at determining statistical properties of the WS volumédrary, the Gaussian distribution fits the probability density
(as well as the cognate problem of the number of distincfsave its long tailssurprisingly well, not only at asymptoti-
lattice sites visited by a random walk@—8]) are motivated ~ cally long times, but over a wide range of times as well.
both by many interesting mathematical iss{@40] and the As a concluding remark, we shall discuss the relationship
number of physical, chemical, and biological applicationsbetween the WS volume characterizing continuous diffusion
[11,17 that call for a knowledge of this random variable. and the range of a random walthe numbeR,, of distinct
One source of the particular interest in this class of problemsites visited by am-step lattice random walkused in con-
is that of improving the initial Smoluchowski theory of sidering the analogous discrete process. The theory of the
diffusion-controlled reactiongl2]. range of a random walk was initiated by Dvoretzky and

Analytical approaches and numerical simulations areErdcs [3] and developed in subsequent articlds-7] (see
complementary in their consideration of the problem undeiRef.[8] for a general reviey The similarity of a Brownian
study. Due to analytical treatmerjts,2,10,13—1%consider- ~motion trajectory and a random walk is well knowWh9].
able progress has been made in understanding the statistid@rhaps this could have been the motivation for the seem-
properties of the WS volume, mainly at long times. At inter- ingly widespread opinion tha, is simply a discrete analog
mediate and short times the problem is less well understoo®f the WS volume, and the difference between these quanti-
The formulas obtained are not asymptotic series and there &S is not significant. We show that this opinion is generally
no indication of how large has to be to ensure that the given not valid because the similarity of trajectories does not imply
formulas become valid. In particular, it is knowdue to Le  the similarity of functionals of trajectories. Only in low-
Gall [13)) that, in high dimensionsd=3) the limiting ¢  dimensional spacesd(=1,2) are the WS volume and the
— o) distribution is Gaussian; however, no information is range of a random walk proportional to one another.
available on when this limit is reached. The most efficient We begin by recalling some relevant definitions and
method for solving problems of such type is a Brownian
dynamics simulation. Brownian dynamics is an off-grid
method for simulating diffusion processes, which is not re-
stricted to a finite simulation bojkl7,18. It is based on the
isomorphism between the diffusion and Langevin equations.
As far as we are aware, the Brownian simulation has never
been applied to analysis of the WS.

With this in mind, we have simulated stochastic trajecto-
ries of a spherical Brownian particle, counted directly the
volume visited by the particle, and calculated the average
value, the dispersion, and the probability density of the WS
volume. The results obtained in the three-dimensional case
are presented in this paper. First, to verify our method of
simulation we compare the computed result for the average
volume with the known analytical solutidd 6] and find very FIG. 1. A sample of a typical Wiener sausage generated by
good agreement between them. Then, we show that the linBrownian dynamics simulation.
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known analytical results to be used in the subsequent analyFhe approximation used in R€f16] is too crude for calcu-
sis. Consider a spherical Brownian particle of radiuBy  lating the coefficientA determining the correction term for

introducing an indicator function the long-time expansion of the dispersion. However, without
o the correction term one cannot decide where the asymptotic
B 1 if min|r— rWt|sb behaviorr In 7 predicted by the main term becomes valid and
To(r, We) = 0 otherwise oy Eqg. (6) is meaningful only in the limitr—o. One of our

motivations to carry out statistical simulation of the WS is to
where rWtEWt’ the volume of WS that corresponds to a estimate the coefficiemd and, hence, to elucidate the long-
; ; ; ; _ time behavior of the dispersion. Another motivation is to
?A\éﬁ; (\j/\gﬁ:ee(; t:;uectorwvt of the particle center can be for look at how the Gaussian distribution fits the probability den-
sity Fi(v) at different times.
To simulate the WS first it is necessary to simulate sto-
U(Wt)=j Ip(r,Wy)dr. (20 chastic trajectories of the center of a freely diffusing spheri-
cal particle. The trajectories are generated from a series of
The random variable (W,) is distributed with the probabil- successive Brownian steps by employing the original step
ity density F(v)=(ds[v—v(W,)]) (the symbol(---) stands algorithm of Ermak and MacCammda7]. In a given run,
for the average over the Wiener trajectoyiesnalytical cal-  the particle center moves through a sequence of pimjs
culation of the probability densit§(v) characterizing the i=1,2,... . Theith hop occurs during a predefined time
distribution of the WS volume at timet is a hard math- interval At, so that the trajectory is propagated according to
ematical problem. An exact solution has been found only in
one dimension for both fregl5,16 and biased Brownian
motion[20]. In high dimensionsd=3), the probability den- ris1=rit V24t
sity near its maximum takes on the Gaussian form when
—oo [13], where the vectolg is generated stochastically as a set of
Gaussian random numbers with a standard deviation of unity
1 [v—v()]? (the diffusion coefficient is set to unityln order to compute
Fi(v)= \/ﬁa(t) exp — 20%(t) )’ 3) the volume of the WS corresponding to a given trajectory,
we embed the trajectory into a cubic box. This box is parti-
wherev(t)=(v(W,)) is the average of the WS volume and tioned into small cubic boxes of size<1 (the particle ra-
a?(t) is the dispersion. In accordance with the definitionsdius b is set to unity. Following the definition of the WS
Egs. (1) and (2), the average of (W,) is expressed via the Volume, Eqs(1) and(2), we consider a small box as *vis-
average of the indicator function. The quantity(r,W,)) is  ited” if the minimal distance of its center from the trajectory
equal to the probability that a diffusing particle is absorbeds less than 1. Then we count the number of “visited” smalll
by the only trap of radiu® for time't, initially at distancer, cubes and find the WS volume. The results are averaged over
which is a well known solution of the isolated pair problem. 1000 trajectories. We performed additional analysis and

)

Using this fact, one hasl6] found that At=0.01 (with this set of unitst=7) and «
=0.25 are optimal values fakt and« from the viewpoint of
v(1)=3vo(7+2{rl7+3), (4) accuracy of the calculation and time and memory consump-

tion. Note also that for a spherical Brownian particle our
wherer=Dt/b? is the dimensionless tim® is the diffusion  method of gauging the volume leads to an overestimate of
coefficient, andvo= 3 7b® is the volume of the Brownian To refine the estimate, the result of calculation of the WS
particle. volume is rescaled by a factor of 0.9his value of the
To find the dispersionr?(t) one has to focus on the av- correction factor was chosen because it allows us to reach a
erage of the square of the WS voluméi(t)=(v?(W,)), perfect agreement between the average volume of the WS
because found by simulations and the analytical result, which is ex-
_ ach.
a?(t)=v?(t) —v2(1). (5) A sample of a typical WS generated according to the
o above method is shown in Fig. 1. It demonstrates well the
From the definition of the WS volunisee Eqs(1) and(2)],  entangled behavior of particle trajectories and the compli-
it follows that the second moment’(t) can be expressed cated structure of the WS. In Fig. 2 we present the Brownian
through the absorbing probability of a Brownian particle in dynamics simulated results for the average volume of the
the presence of one and two traps. In the two-trap situation ¥vs at different times in comparison with the exact time
is difficult to calculate the absorbing probability for arbitrary dependence(r) given by Eq.(4). Such a comparison serves
position of the traps. A simple approximate method to treaks a test of accuracy of our simulation. Even at short times
the problem at long times was proposed in R&6], where, <10, where the accuracy of measuring the volume is rela-
as a result, three main terms of the long-time expansion ofively low, deviations do not exceed 3%, while at longer
v?(t) were found. The first two coincide with the two main times 7>100, they are less than 0.5%. The fact that the
terms of the long-time expansion of(t). Thus, the result computed and analytical results for the average volume are
obtained in Ref[16] can be written in the form in very good agreement allows us to apply the method to the

) study of more detailed properties of the WS volume distri-
dX ()= rInT—Ar+o(7)] for >1. (6) bution.
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FIG. 2. Comparison of the analytical solution for the average 0.25 1.00 v/o 175

WS volume[Eqg. (4)] (solid line) with simulation datgsquarep
FIG. 4. Time evolution of the probability density of the WS

Figure 3 presents the results of calculations of the disperolume. Different panels correspond to different ranges of time.
sion a-z(t). As one might expect, only the main term of the The results of the simulationgveraged over 10 000 and 1000 tra-
asymptotic dependengsee Eq(6)] makes too crude an es- jectories for the bottom and top panels, respectWalye _pre_sen_ted
timate of the dispersion not only at short times but also aby symbols. The curves correspor;d to the Gaussian dls_trlbutl_on, Eq.
intermediate times £~ 10°). Taking properly into account (2), with the param_eterE(t) and o“(t) calculated from simulation
the linear correction term brings the theory and the Compute?ata.' The legend gives the pattern correspondencg. The dash-dotted
experiment into better agreement. The statistical processing < " (e bottom panel represents the exact solution for the prob-
of simulated datdat the times 90& <1000 best suited for lity density of the WS volume in one dimensiptb,16.
our goal$ suggests that the coefficiedt is equal to 4.42
+0.02 (the surprising thing is that the crude estimate
~4.71, derived by the method 6] whose accuracy is too
low for the correct calculation o4, is probably not much in
erron. Thus only at times= 10?° does the main term in Eq.
(6) by itself give a more or less adequaisith accuracy
10%) estimate ofco?(t). With A=4.42, Eq.(6) allows a
refined calculation of the dispersion at-500.

All of the relevant properties of the WS volume can be
expressed in terms of the probability dendiy(v). When
considered as a function of F,(v) has a bell-shaped form.
In the course of time the peak shifts to infinity and its width

increases. The time evolution of the probability density is
strikingly illustrated by Fig. 4, in which the volume is
scaled byv (7). In this figure we present the distribution of
the WS volume at different times, obtained from simulation
data. We also present the curves corresponding to the Gauss-
ian distribution, Eq(2), with the parameters(7) ando?(7)
found from the results of simulation. For comparigamthe
bottom panelwe add the probability density of the span of
Brownian motion(the one-dimensional analog of the WS
volume), which can be calculated exac{l$5,16. Note that
this curve exhibits a non-Gaussian distribution of the span
and is independent of time.

As indicated in Fig. 4bottom panel even at short times
(7=10) the Gaussian distribution is a satisfactory approxi-
mation for the probability density. This is in contrast with
what is known for the one-dimensional case. The non-
Gaussian behavior in one dimension is due to the memory
among the increments of the “volume” visited by a Brown-
ian particle at different instances of time. Because in three
dimensions the Brownian motion is a transient proc@ss
the one-dimensional case the process is recyirehe
: memory effects are weakened in the course of time. The

* 1 important consequences of this fact are the linear dependence
. 1 of the average volume on time and the Gaussian form of the
probability density atr>1. We would like to stress, how-

] ever, that these effects do not disappear even at asymptoti-

- cally long times. Just the memory effects are responsible for

=D the non-Gaussi_an behavior !n the fqr tails. Mqreover, the
nonlinear long-time asymptotic behavior of the dispersion is

FIG. 3. Comparison of the analytical solution for the dispersion@lso a manifestation of non-Markovian properties of the WS
[Eq. (6)] with A=4.42 (solid line) with simulation data(circles. volume.

Dashed line corresponds to the long-time asymptotic behavior given As Fig. 4 suggests, with time the normalized bandwidth
by only the main term of Eq(6). associated with the relative fluctuatiai(7)= o (7)/v(7)
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rapidly decays. At times>100 (top panel, the Gaussian check this using the results obtained in R¢#--6], [16]),

distribution becomes a very good approximation for thei.e., the quantities discussed are identical. In three dimen-

probability density. This is in agreement with the centralsions, however, this is not the case. Indeed, according to Egs.

limit theorem forF,(v) proved by Le Gal[13]. Moreover, (4), (6), (8), and(9), we have asymptotically

our results show that in fact the probability densiy(v)

takes on the Gaussian form not only at asymptotically long o(n)o,=3.7D/1, (10

times but at intermediate times as well. Of course, such a

conclusion holds true only for volumes that are not too fari.e.,v andR, are not proportional to one another. The point

from v(7) (our estimates show that the halfwidth of this is that the discrete analog of the WS volume is the number

interval is at least of order I0at times7=1000). As shown R(n;b) of distinct sites visited by a sphere of radins-|,

by Donsker and Varadhapl4], the smallv behavior of the center of which executes random walks on the lattice.

F.(v) obeys an exptcons Dt/v?) law. Unfortunately, the  Evidently, for d>2, where the Brownian motion is a tran-

accuracy of our simulation is too low to handle the largesient process, the statistical propertied¢h;b) differ from

deviations and non-Gaussian behavior in the far tails. those ofR, . The distinction occurs at arty>1. Thus, only
Our last remark is that the WS volume is similar but notin low-dimensional spaces, where the process is recurrent,

identical to the number of distinct sites visited by a randomare the WS volume and the range of the random walk pro-

walk (the range of the random walkcharacterizing the portional to one another.

analogous discrete process. In order to demonstrate this, let To summarize, we have performed a quantitatively accu-

us compare the trajectory of the Brownian particle center toate Brownian dynamics numerical simulation of the WS.

ann-step fi>1) random walk on a simple cubic lattice with We have studied the statistical properties of the volume of

periodl. For timet such a walk executes the WS. Our main result is that the Gaussian distribution fits
the probability density surprisingly well, not only at asymp-
— 2_ 2
n=6Dt/I"=6(b/l)°7 ®) totically long times, but over a wide range of times as well.

We have also demonstrated that the limiting expression for
the dispersion is a useful approximation at very long times
P_nly, and found a correction term that allows a refined cal-
culation of the dispersion at intermediate times. Along with
the general theory of random processes the results of the
present paper may be useful when considering diffusive pro-
= . N ) cesses in which the particle size far exceeds its mean free
value R, and the dispersiowr;, of the range, which are as- path. The results obtained in the two-dimensional case will

steps and visit,, distinct lattice sites. Note that a continu-
ous description implies that the particle radiuappreciably
exceeds its mean free path, whose role is played by the la
tice periodl, i.e.,b>1 (the lattice consideration is justified in
the opposite limiting casé>b). For largen, the distribution

of R, is Gaussiar{5] and can be specified by the average

ymptotically [4—6] be reported elsewhere.
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